Rapid Evaluation of Research Proposals Using Aspen Plus

AspenWorld 2000 Presentation February 6-11, 2000 Orlando, FL

Robert J. Wooley, PhD, PE Kelly Ibsen, PE National Renewable Energy Laboratory Golden, CO

NREL

- National Renewable Energy Laboratory
- Operated under the Direction of the US Department of Energy
- Multiple Programs in Renewable Energy Area
- Specific Area of Interest, Biofuels
 - Production of Fuels from Lignocellulosic Biomass
 - Specifically using Biological Processes

Our Business

- Develop Technology to Enable the Competitive Production of Ethanol from Lignocellulosic Biomass
- How do we do that?
 - Sponsor Research on the Most Promising new Technologies
 - Both at NREL and at Universities and Industries
- Which Projects should be Funded?
 - Use a modified "Stage-Gate" Methodology to Select

Concept Development Qualification of Opportunity Confirm Feasibility Development Commercial Launch

How Do You Determine What Research Projects to Fund?

- Stage 2 is a Preliminary Investigation (1 man-month max)
- Stage 3 Is Where NREL Funds Research
- To Pass Gate 2 The Project Must Meet:
 - Subjective Information
 - Fit in the Strategy of the Base Process
 - Be Feasible
 - Reasonable Goals and Show-Stoppers
 - Reasonable Time Frame and Resource Requirements
 - Objective Information
 - Be Economically Attractive as Compared to the Base-Case

Rapid Economic Evaluation Allows Management to:

- Have Some Objective Information to Make Go/No Go Decisions
- Prioritize Seemingly Go Projects Based on Economic Impact

Types of Process Economics Performed for NREL Biofuels

- Absolute Cost of Biomass to Ethanol Conversion
 - Useful for Market Penetration Studies
 - Required for Site Specific Project Feasibility Studies
- Incremental Cost Improvements of Research Proposals
 - Use as Objective Information in Stage Gate Screening
 - More Accurate than Absolute Costs

Rigorously Develop a Base-Case

- Feed Woodchips or Agricultural Waste
 - 2000 dry Tons/day
- Production Fuel Grade Ethanol
 - 70MM+ gallons / year
- 9 Process Areas
 - 23 PFD
 - 181 Costed Unit Operations
- Research Ideas Modeled as Process Alternatives

Base ASPEN Plus Model

- 147 Unit Operations
- 59 Components
- 217 Material Streams
- 211 Heat and Work Streams
- 60 Control Blocks (Design-Spec & Fortran)

Why Use a Process Simulator? (ASPEN Plus)

- Rigorous Thermodynamic Models Built In
- Rigorous Unit Operation and Recycle Convergence Built-In
- Easy Translation of Complex Processes with Solids into Included Unit Operation Blocks
- Easily Customizable when Necessary
- Self Documenting
- Easily Understandable, Widely Used in the Industry
- Commercially Supported

Approach to Detailed Process Modeling

- Use Detailed Modeling to Support and Interpret Experimental Work
 - Fortran, MatLab, Aspen/Plus, Aspen/SP, Scientist, Excel, Others
- Translate Experimental Work and Detailed Modeling into "Simpler" Forms
- Use a Less Detailed ASPEN Model to Describe the Entire Integrated Process

Important Ancillary Information in Cost Database • Scaling Exponent • Scaling Item from Aspen - Identification of Item • Flow • Size - Base Value - Units

Do Not Redesign and Cost Each Alternative

- Scaling of Aspen Information in to Costs
 - Base Information from Access Database
 - Base Cost
 - Base Variable
 - Base "Size"
 - Use Excel Spreadsheet to Scale Costs
 - Use Information from Aspen on New "Size"
 - Flor
 - Calculated Size, e.g., Column Diameter
 - Heat Duty, e.g, No ΔT Changes
 - Calculated Area, e.g., HX from Fortran

Extract Information from ASPEN Plus

- Consolidate in Sensitivity Block
- Extract to Excel Look-up Table
 - From GUI Use Paste-Link
 - From Input File Mode Use VB-Summary File Tool Kit

Extract Information from MS Access Database Where PFD Like 'PFD-P100*'

ASSOCIATED PFD	EQUIP NUM	NUM REQ.	NUM SPARE	NUM REQUIRED VAR	PROCESS ITEM FOR SCALING	BASE FOR SCALING	BASE COST	SCALE EXP
PFD-P100-A302	A-300		0	INUMSSFA			19676	
PFD-P100-A302	A-301	1	0		STRM0304	41777	12551	0.51
PFD-P100-A302	A-304	2	0		STRM0304	41777	11700	0.51
PFD-P100-A302	A-305	2	0		STRM0304	41777	10340	0.51
PFD-P100-A302	A-306	1	0		STRM0502	381700	10100	0.51
PFD-P100-A302	H-302	3	0		AREA0302	3765	25409	0.78
PFD-P100-A302	H-304	1	0		QSDF0301	38339	3300	0.83

ASPEN PLUS Value - Look-up From ASPEN Plus Link MS Access Ditainus, Value - Look-up from MS Access Link Calculated Value User Entered Specification

Evaluation of Research Ideas

- Understand Research Idea
 - Scientist Explains Idea to Engineer
- Anticipate Expected Range of Research Results
- Transform Idea and Expected Results into Modifications to Process Model
- Add New Equipment Estimates
- Determine Cost Differential due to Modification

For 1 Ba	ase Process
Pretreatment	9
Detoxification	14
Fermentation	30
Enzyme Production	14
Waste Treatment	4
Utilities	2
Economics	2
Total	74

Example Process Alternatives							
Process Area Process Parameter							
Pretreatment Xylan to Xylose Conversion							
Pretreatment Solids Concentration in Feed							
Pretreatment Reactor Material of Construction							
Pretreatment Acetic Acid Removal							
Pretreatment Sugar Recovery in IX							
Enzyme Production Enzyme Loading							
Enzyme Production Enzyme Productivity							
Enzyme Production Sterilization							

Total Number of Assessments • 3 base Processes • High and Low for Each Sensitivity • Over 400 Sensitivities

Result

- Develop Base-case in Detail
 Documents Sensitivities, Eliminates Repeated Work
- Scale Process Options off Base-case
- Parameter and Configuration Changes to Aspen
- Minor Equipment Cost Modifications for Individual Alternatives
 - Only if new process is significantly different than Base
- Cost Impact of Each Alternative

Detailed Economics